For use with pages 492-494

8.1 Skill Practice

- 1. order of magnitude
- 2. When powers have the same base, their product is the base raised to the sum of the exponents.
- **4.** 8⁷

- **6.** 9^6 **7.** $(-7)^9$ **8.** $(-6)^7$
- **9.** 2^{14} **10.** $(-3)^{14}$ **11.** 3^{10}
- **12.** 7¹²
- **13.** $(-5)^{12}$ **14.** $(-8)^{18}$
- **15.** $15^3 \cdot 29^3$ **16.** $17^4 \cdot 16^4$
- **17.** $132^6 \cdot 9^6$ **18.** $(-14)^5 \cdot 22^5$
- **19**. x^6
- **20.** v^{10} **21.** z^6
- **22.** a^{17}
- **23.** x^{10} **24.** v^{24}
- **25.** $(b-2)^{12}$ **26.** $(d+9)^{21}$
- **27.** $25x^2$
- **28.** $-25x^2$
- **29.** $49x^2y^2$ **30.** $125p^3q^3$
- **31.** $100x^{14}$
- **32.** $64m^{11}$
- **33.** $96d^{22}$
- **34.** $-400x^{13}$
- **35.** $12p^{19}$
- **36.** $2v^{23}$
- **37.** $108x^{29}$
- **38.** $-6400n^{11}$
- **39.** Sample answer: The exponents should be added, not multiplied; $c^{1} \cdot c^{4} \cdot c^{5} = c^{1+4+5} = c^{10}$.
- **40.** B
- **41**. D
- 42. 1

- **43.** 2
- **44.** 5
- **45**. 2

- **46.** 10^7 people **47.** $-3267x^{12}v^{13}$
- **48.** $x^{13}v^{12}z^{17}$
- **49.** $1000r^{17}s^6t^{17}$
- **50.** Sample answer: $3x^2 \cdot 4x^6$, $12(x^4)^2$, $3(2x^4)^2$
- **51.** Sample answer: $(ab)^n = (ab)$. $(ab) \cdot \cdots \cdot (ab)$ so that there are n total terms (ab). By the commutative property, the n a's can be grouped as a repeated multiplication equal to a^n and the n b's can be grouped as a repeated multiplication equal to b^n . $(ab)^n$ is equal to the product of these two groups, or $a^n \cdot b^n$.

8.1 Problem Solving

- **52.** 10^9 air bubbles
- **53.** 10^{26} m
- **54.** 10^{16} grains of sand
- **55. a.** 10^{24} , 10^{25} , 10^{26} , 10^{27} , 10^{28}
 - **b.** $10^5 \cdot 10^{23}$; 10^{28} atoms
- **56. a.** 10^3 times
 - **b.** 10⁵ nanometers
- **57.** 10^{27}

Answers for 8.1 continued For use with pages 492–494

- **58. a.** 10^4
- **b.** 10^{10}
- **c.** Increases the volume by 10^8 . Sample answer: Since the radius is squared in the formula for volume, multiplying the radius by 10 would raise the volume by a factor of 10 • 10, or 10^2 .
- **59.** 2^{13} ways; 2^{10} ways; 2^{23} ways
- 8.1 Mixed Review
- **60.** $-\frac{2}{5}$ **61.** $1\frac{1}{6}$ **62.** $\frac{9}{20}$

- **63.** 81
- **64.** 4.84

66.

67.

68.

69.

70.

Answers for 8.1 continued For use with pages 492–494

For use with pages 498-501

8.2 Skill Practice

- 1. base, exponent
- 2. When powers have the same base, their quotient is the base raised to the difference of the exponents.

- **6.** $(-6)^3$ **7.** $(-4)^3$ **8.** $(-12)^6$

- **9.** 10^6 **10.** 6^5 **11.** $\frac{1}{3^5}$

- **15.** 7⁷ **16.** 9⁶

- 18. -4^4
- 19. C
- **20.** Sample answer: When using the quotient of powers property, the base is raised to the difference of the exponents, not the sum; $\frac{9^8}{9^4} = 9^{(8-4)} = 9^4.$

- **24.** $\frac{j^{11}}{k^{11}}$ **25.** $\frac{p^4}{a^4}$ **26.** $-\frac{1}{x^5}$
- **27.** $-\frac{64}{x^3}$ **28.** $\frac{a^4}{b^4}$ **29.** $\frac{64c^3}{d^6}$

- **30.** $\frac{a^{35}}{32b^5}$ **31.** $\frac{x^4}{9y^6}$ **32.** $\frac{27x^{15}}{343y^6}$
- **33.** $\frac{9x^4}{4y^2}$ **34.** $\frac{4x^6}{3y^3}$ **35.** $\frac{3m^7}{8n^6}$
- **36.** $\frac{100x^6}{v^6}$ **37.** D **38.** 4

- **39**. 8
- **40**. 14
- **41.** 4

- **46.** Sample answer: $\frac{14^8}{14}$, $\frac{14^{10}}{14^3}$, $\frac{14^{14}}{14^7}$
- **47.** Identity property of multiplication; Multiply fractions.; Quotient of powers property
- **48.** x = 8, y = -1; *Sample answer:* Using the quotient of a power property, write two equations for x and y: x - y = 9, and x + 2 - 3y = 13. Solve the equations.

8.2 Problem Solving

49. a.

Step	Number of new squares	Side length of new square
1	$4 = 4^{1}$	$\frac{1}{2} = \left(\frac{1}{2}\right)^1$
2	$16 = 4^2$	$\frac{1}{4} = \left(\frac{1}{2}\right)^2$
3	$64 = 4^3$	$\frac{1}{8} = \left(\frac{1}{2}\right)^3$
4	$256 = 4^4$	$\frac{1}{16} = \left(\frac{1}{2}\right)^4$

- **b.** $\frac{4^4}{4^2}$; 16 times
- **50.** about 10⁵ dollars

- **51.** about 31,710 yr
- **52.** 2.512³ times
- **53.** 31³ times greater
- **54. a.** 2³⁰ kilobytes
 - **b.** 2³⁰ megabytes
 - c. Multiply the number of bytes in each unit by 8, or 2^3 .
- 8.2 Mixed Review
- **55.** 12
- **56.** -10
- **57.** -21

- **58.** 14
- **59.** $-3\frac{1}{3}$ **60.** $\frac{1}{2}$
- **61.** y = -3x 5
- **62.** $y = \frac{1}{2}x + 3$ **63.** y = -3
- **64.** y = 3x 9
- **65.** $y = -\frac{1}{2}x + 3$
- **66.** y = -2x 5

For use with pages 506-511

8.3 Skill Practice

- 1. Product of powers property and definition of zero exponent; the expression simplifies using the product of powers property to 3⁰, which by definition equals 1.
- **2.** Sample answer: The definition of negative exponents is defined only for nonzero bases.

3.
$$\frac{1}{64}$$

4.
$$\frac{1}{343}$$

5.
$$-\frac{1}{3}$$

6.
$$\frac{1}{64}$$
 7. 1

9. 1 **10.** 1 **11.**
$$\frac{49}{4}$$

12.
$$\frac{27}{64}$$

14. undefined **15.**
$$\frac{1}{32}$$

15.
$$\frac{1}{32}$$

16.
$$\frac{1}{49}$$

17.
$$\frac{1}{32}$$

18.
$$\frac{1}{81}$$

21.
$$\frac{1}{243}$$

22. 36 **23.**
$$\frac{8}{3}$$
 24. $\frac{1}{2}$

24.
$$\frac{1}{2}$$

26.
$$\frac{5}{9}$$

27. 3^0 is not equivalent to 0, but to 1; $-6 \cdot 3^0 = -6 \cdot 1 = 6$.

28.
$$\frac{1}{x^2}$$

29.
$$\frac{2}{v^2}$$

30.
$$\frac{1}{64g^3}$$

31.
$$\frac{1}{121h^2}$$

32.
$$\frac{x^2}{v^3}$$

33.
$$\frac{5}{m^3n^4}$$

34.
$$\frac{x^6}{216y^9}$$

36.
$$\frac{s^4}{r^2}$$

37.
$$\frac{1}{x^5y^2}$$

38.
$$\frac{x^2y^6}{8}$$

39.
$$\frac{y^8}{15x^{10}}$$

40.
$$4z^2$$

41.
$$243d^3$$

42.
$$-\frac{y^{10}}{27x^5}$$

43.
$$\frac{3x^{12}y^5}{4}$$

Sample answer:
$$\frac{2^{-3}}{2^{-4}} = 2$$

48. Not true. Sample answer:
$$2^{-1} + 2^{-1} = 1$$

49. Sample answer: It approaches 0.

8.3 Problem Solving

50. about
$$10^6$$
 grains of salt

53. about
$$10^{11}$$
 red blood cells

54. No. Sample answer: The giant fan palm has a mass of about 10⁴ grams or 10,000 grams, which equals 10 kilograms.

55. a.
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$$
 b. $\left(\frac{1}{2}\right)^x$

b.
$$\left(\frac{1}{2}\right)^x$$

28.
$$\frac{1}{x^4}$$
 29. $\frac{2}{y^3}$ **30.** $\frac{1}{64g^3}$ **b.** $\frac{(\text{cm})^2}{\frac{\text{cm}^2}{\text{sec}}} = \text{cm}^2 \cdot \frac{\text{sec}}{\text{cm}^2} = \text{sec}$
31. $\frac{1}{121h^2}$ **32.** $\frac{x^2}{y^3}$ **33.** $\frac{5}{m^3n^4}$ **57. a.** 112.5 watts **b.** $I = 9d^{-2}$
34. $\frac{x^6}{216y^9}$ **35.** 1 **36.** $\frac{s^4}{r^2}$ **c.** The intensity is divided by 4

b.
$$I = 9d^{-2}$$

8.3 Mixed Review

63.
$$\left(\frac{1}{2}, -4\frac{1}{2}\right)$$
 64. $(4, 4)$

66.
$$\left(6, \frac{1}{4}\right)$$

67.
$$(1, -2)$$
 68. $\left(-4\frac{1}{2}, 2\frac{1}{3}\right)$

8.1-8.3 Mixed Review of Problem Solving

1. 1000 times:

1	0	0	0	
	0	0		
\odot	0	\odot	\odot	
	0	0	0	
1	1	1	1	
2	2	2	2	
3	3	3	3	
4	4	4	4	
(5)	3	3	3	
6	6	6	6	
7	7	7	7	
8	8	8	8	
9	9	9	9	

- **2.** a. $\frac{729}{8}$ in.³
 - **b.** Power of a quotient property
- 3. a. 10^{-12}
- **b.** 10^{-6}
- c. Sample answer: Divide the order of magnitude of the

- volume of the raindrop by the order of magnitude of the volume of the droplet; 10² droplets, Quotient of a power property.
- 4. 1000 watts per square meter;

1	0	0	0	
Ha	0	0		
\odot	\odot	\odot	0	
	0	0	0	
1	1	1	1	
2	2	2	2	
3	3	3	3	
4	4	4	4	
(5)	3	3	(5)	
6	6	6	6	
7	7	7	7	
(8)	8	8	8	
9	9	9	9	

- **5. a.** 10^{-6} in
- **b.** 10 in.^3
- **c.** Sample answer: Multiply the surface area 10^x square inches by the thickness of the oil 10^{-6} inches to calculate the volume of oil in cubic inches needed. $10^x \cdot 10^{-6}$ $= 10^{x-6} \text{ in.}^3$
- **6. a.** Sample answer: How many milliseconds are in a gigasecond?
 - **b.** Sample answer: How many megaseconds are in 1 gigasecond?

For use with pages 515-518

8.4 Skill Practice

- 1. No; 0.5 is not a number greater than or equal to 1.0 and less than 10.
- **2.** Greater than 1; the exponent is positive.
- 3. 8.5×10^1
- **4.** 7.2×10^{-1}
- **5.** 8.24×10^{1}
- **6.** 5×10^{-3}
- 7. 7.2×10^7
- **8.** 4.06×10^{-3}
- **9.** 1.06525×10^6
- **10.** 4.5×10^{-5} **11.** 1.06×10^{9}
- **12.** 5.26×10^{-6} **13.** 9×10^{14}
- **14.** 7.008×10^{-8}
- **15.** C
- **16.** 2600
- **17.** 75,000,000
- **18.** 111
- **19.** 30,300
- **20.** 4,709,000
- **21.** 15,440,000,000
- **22.** 0.0061
- **23.** 0.00000000044
- **24.** 0.00000223
- **25.** 0.0000000852
- **26.** 0.00000000064111
- **27.** 0.0000012034
- 28. The decimal point should be moved to the left, not the right; $1.24 \times 10^{-3} = 0.00124$.

- **29.** 6.7×10^3 ; 12,439; 2×10^4 ; 45,000
- **30.** 6.07×10^6 ; 6.2×10^6 ; 3.557×10^7 ; 55,004,000; 65,000,000
- **31.** 9.8×10^{-6} ; 0.00008; 0.0005; 5×10^{-3} ; 8.2×10^{-3} ; 0.04065
- **32.** 0.000005; 5.08×10^{-6} ; 2.4×10^{-5} ; 0.0000395; 0.00010068
- 33. <
- 34. <
- 35. =

- 36. =
- 37. >
- 38. >
- **39.** 6.6×10^{-4} **40.** 4.234×10^{-2}
- **41.** 7.29×10^{-9} **42.** 7.5×10^{2}
- **43.** 3×10^{-3}
- **44.** 5×10^{-5}
- **45.** 1.25×10^{-22}
- **46.** 2.401×10^{-17}
- **47.** 1.96×10^6
- **48.** B
- 49. Sample answer: 2.8×10^{1} and 1×10^{3} ; 11.2×10^5 and 4.0×10^1
- **50.** 4.27×10^5 ; *Sample answer:* Rewrite 6.7×10^4 as 0.67×10^5 , then add 3.6 + 0.67 = 4.27. Since the answer is between 1 and 10, the exponent does not change, so the answer is 4.27×10^5 .

Answers for 8.4 continued For use with pages 515–518

8.4 Problem Solving

- **51. a.** 1.4×10^{-4} ; 2.5×10^{-1} ; 1.67×10^{2} ; 555
 - **b.** the elephant beetle and the walking stick
- 52. Voyager 1
- 53. 1406 pounds per acre
- **54.** 14; the flow rate of the Amazon River is about 14 times faster than the flow rate of the Mississippi River.
- **55. a.** About 3.67; the radius of the Earth is about 3.67 times greater than the radius of the moon.
 - **b.** About 49.30; the volume of the Earth is about 49.30 times greater than the volume of the moon.
 - **c.** The ratio of the volumes is the cube of the ratio of the radii.
- **56. a.** about 1×10^{10} locusts
 - **b.** $2 \times 10^{10} \, \text{kg}$
- **57.** 4 in. by 6 in.
- **58. a.** $\frac{1.863 \times 10^5 \text{ mi}}{1 \text{ sec}} \cdot \frac{60 \text{ sec}}{1 \text{ min}}$ $\cdot \frac{60 \text{ min}}{1 \text{ h}} \cdot \frac{24 \text{ h}}{1 \text{ day}} \cdot \frac{365 \text{ days}}{1 \text{ yr}}$ $\approx 5.875 \times 10^{12} \text{ mi/yr}$

b.

101			
Years	1	10	
Miles traveled	5.875×10^{12}	5.875×10^{13}	
Years	100	1000	
Miles traveled	5.875×10^{14}	5.875×10^{15}	
Years	10,000	100,000	
Miles traveled	5.875×10^{16}	5.875×10^{17}	

- **59. a.** 4.9 L
 - **b.** about 2.58×10^6 L, about 2.58×10^7 L, about 2.06×10^8 L
 - c. Underestimates.

 Sample answer: They are calculated when a person is at rest. When a person is not resting, the rate will go up.
- **60. a.** 500 times greater
 - **b.** about 18 h

8.4 Mixed Review

- **61.** 0.33 **62.** 0.627 **63.** 0.009
- **64.** 0.0004 **65.** 0.0395 **66.** 0.0025
- **67.** 0.025 **68.** 1.33

Answers for 8.4 continued For use with pages 515–518

For use with pages 523-527

8.5 Skill Practice

- **1.** growth factor **2.** b > 1
- 3. The graph would be a vertical stretch. Sample answer: Since the y-values of $y = 2 \cdot 5^x$ are double those of $y = 5^x$.

4.
$$y = 4 \cdot 2^x$$

5.
$$y = 125 \cdot 5^x$$

6.
$$y = \frac{1}{2} \cdot 2^x$$
 7. $y = \frac{1}{9} \cdot 3^x$

7.
$$y = \frac{1}{9} \cdot 3^x$$

8. Sample answer: If the difference between successive terms is constant, the function is linear and if the ratio of successive terms is constant, the function is exponential.

9.

domain: all real numbers range: all positive real numbers 10.

domain: all real numbers range: all positive real numbers

11.

domain: all real numbers range: all positive real numbers

Answers for 8.5 continued For use with pages 523-527

domain: all real numbers range: all positive real numbers

13.

domain: all real numbers range: all positive real numbers

domain: all real numbers range: all positive real numbers 15.

domain: all real numbers range: all positive real numbers

16.

domain: all real numbers range: all positive real numbers

17.

domain: all real numbers range: all positive real numbers

Answers for 8.5 continued For use with pages 523-527

domain: all real numbers range: all positive real numbers

domain: all real numbers range: all positive real numbers

domain: all real numbers range: all positive real numbers

The graph is a vertical stretch.

The graph is a vertical stretch.

The graph is a vertical shrink.

Answers for 8.5 continued For use with pages 523–527

The graph is a vertical shrink.

The graph is a vertical shrink.

The graph is a vertical stretch.

The graph is a vertical stretch with a reflection in the *x*-axis.

The graph is a vertical stretch with a reflection in the *x*-axis.

The graph is a vertical shrink with a reflection in the *x*-axis.

The graph is a vertical shrink with a reflection in the *x*-axis.

32.

The graph is a vertical shrink with a reflection in the *x*-axis.

33.

The graph is a vertical stretch with a reflection in the *x*-axis.

34. C

35. 200%; Sample answer: A growth rate of 200% would create a growth factor of 1 + 2 = 3, which would represent the tripling of the population every year.

36. Sample answer: f(x) = 4x + 2, $f(x) = 2 \cdot 3^x$

37. Sample answer: The graphs are the same. Since by the product of a power property $2^{x+2} = 2^x \cdot 2^2$, and $2^x \cdot 2^2$ simplifies to $4 \cdot 2^x$, $2^{x+2} = 4 \cdot 2^x$.

8.5 Problem Solving

38. a. \$131.25

b. \$137.81

c. \$159.54

d. \$331.66

39. a. Let x represent the number of years since 2001 and f(x) represent the number of computers (in hundreds of millions); $f(x) = 6 \cdot (1.1)^x$.

b. about 1,286,153,286 computers

40. a. Let x represent the number of years since 1985 and f(x) represent the number of grills shipped; $f(x) = 3,173,000 \cdot (1.07)^x$.

b. about 10,022,921 gas grills

about 8.4 yr

42. Yes. Sample answer: The quotient of each pair of adjacent terms is the same, $\frac{7}{4}$.

43. C

44. a. initial amount: 4.67 million, growth factor: 1.65, growth rate: 0.65

domain: $0 \le x \le 10$

range: $4.67 \text{ million} \le y \le 698.5$

million

c. 1994

45. $y = 25.96(1.059)^x$; about 145 Hz

46. a. y = 834,694.9x + 12,866,020; 834,694.9 people

> **b.** $y = 12,866,020(1.0268)^x$; about 2.68%

c. Sample answer: The exponential model is more accurate from 1850-1890. The exponential model underestimates the actual totals by less than 2 million in 1850 and 1870, while the linear model overestimates by more than 5 million in each year.

47. \$1266.77 **48.** \$1270.11

49. \$1271.24

50. Daily; in an account compounded daily, each day you earn interest on both the principal and the interest that was accrued on the previous days.

51. 4.6%

8.5 Mixed Review

52.
$$\frac{1}{9}$$

53.
$$\frac{1}{64}$$

54.
$$\frac{1}{64}$$

55.
$$\frac{1}{64}$$

56.
$$\frac{9}{4}$$

57.
$$\frac{25}{49}$$

A16

58.
$$\frac{27}{64}$$

59.
$$\frac{16}{81}$$

52.
$$\frac{1}{9}$$
 53. $\frac{1}{64}$ **54.** $\frac{1}{64}$ **55.** $\frac{1}{64}$ **56.** $\frac{9}{4}$ **57.** $\frac{25}{49}$ **58.** $\frac{27}{64}$ **59.** $\frac{16}{81}$ **60.** $y = \frac{4}{5}x - 3$ **61.** $y = x + 4$