1. 15 m³

2. C

3. B

4. A

5. 72 in.³

6. 96 cm³

7. 2 m³

8. 4,524 cm³ 9. 13 ft³

10. 367 m³

11. 5 cm

12. about 13 cm

13. 603 cm³

- 15. no; because the radius is squared in the formula, and the height is not
- 16. 5 in.
- **17.** 1.67 ft
- 18. Suppose the original volume is $\frac{1}{3}b^2h$. If the dimensions are doubled, the new volume is $\frac{1}{3}(2b)^2(2h)$, which simplifies to $\frac{8}{3}b^2h$. The new volume is 8 times the original.
- 19. Each volume formula involves the product of the height h and the base area B. You can substitute the appropriate area formula for B when finding the volume. For cones and pyramids, you must also multiply the product by $\frac{1}{3}$.
- **20.** about 127 in.³ **21.** A

22. H

23. A

24. 2,714 ft²