1. $15 \mathrm{~m}^{3}$
2. C
3. B
4. A
5. 72 in. ${ }^{3}$
6. $96 \mathrm{~cm}^{3}$
7. $2 \mathrm{~m}^{3}$
8. $4,524 \mathrm{~cm}^{3}$
9. $13 \mathrm{ft}^{3}$
10. $367 \mathrm{~m}^{3}$
11. 5 cm
12. about 13 cm
13. $603 \mathrm{~cm}^{3}$
14. $13 \mathrm{~m}^{3}$
15. no; because the radius is squared in the formula, and the height is not
16. 5 in.
17. 1.67 ft
18. Suppose the original volume is $\frac{1}{3} b^{2} h$. If the dimensions are doubled, the new volume is $\frac{1}{3}(2 b)^{2}(2 h)$, which simplifies to $\frac{8}{3} b^{2} h$. The new volume is 8 times the original.
19. Each volume formula involves the product of the height h and the base area B. You can substitute the appropriate area formula for B when finding the volume. For cones and pyramids, you must also multiply the product by $\frac{1}{3}$.
20. about 127 in. ${ }^{3}$
21. A
22. H
23. A
24. $2,714 \mathrm{ft}^{2}$
